FIRS: A New Instrument for Photospheric and Chromospheric Studies at the Dunn Solar Telescope

Sarah Jaeggli, Haosheng Lin, Don Mickey, Jeff Kuhn (IfA, U. Hawai’i)

Steve Hegwer, Thomas Rimmele, Matt Penn (NSO)

This project is supported by the National Science Foundation Major Research Program, Award No. ATM-0421582.
Solar B, Photosphere to Corona

- Coronal heating
- Vertical wave propagation from the photosphere to chromosphere
- Running penumbral waves
- Normal and inverse Evershed flows
- 3D magnetic structure of sunspots
- Prominence and spicule magnetic fields
- Canopy fields
- Dynamic events and evolution of everything with time
Multi-Spectral: Multi-Height Diagnostics

<table>
<thead>
<tr>
<th>Line [Å]</th>
<th>Species</th>
<th>Landé g</th>
<th>Formation Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>6302</td>
<td>Fe I</td>
<td>1.667, 2.5</td>
<td>mid-photosphere</td>
</tr>
<tr>
<td>8542</td>
<td>Ca II</td>
<td>1.1</td>
<td>low chromosphere</td>
</tr>
<tr>
<td>10827</td>
<td>Si I</td>
<td>1.5</td>
<td>photosphere</td>
</tr>
<tr>
<td>10830</td>
<td>He I</td>
<td>2.0, 1.75, 1.25</td>
<td>high chromosphere</td>
</tr>
<tr>
<td>15650</td>
<td>Fe I</td>
<td>3, 1.53</td>
<td>low photosphere</td>
</tr>
</tbody>
</table>
Instrument Requirements

Multi-Spectral: Multi-Height Diagnostics

High Cadence: Dynamics
Instrument Requirements

Multi-Spectral: Multi-Height Diagnostics

High Cadence: Dynamics

High Spectral Resolution: Detailed Physics
Instrument Requirements

Multi-Spectral: Multi-Height Diagnostics

High Cadence: Dynamics

High Spectral Resolution: Detailed Physics

High Spatial Resolution: Structure Detail
Instrument Requirements

with FIRS
Instrument Requirements with FIRS

Multi-Spectral: Multi-Height Diagnostics
Dual-arm spectrograph for simultaneous visible and infrared observations

Beam splitter to share the beam with IBIS

<table>
<thead>
<tr>
<th>Line [Å]</th>
<th>Species</th>
<th>Landé g</th>
<th>Formation Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>6302</td>
<td>Fe I</td>
<td>1.667, 2.5</td>
<td>mid-photosphere</td>
</tr>
<tr>
<td>8542</td>
<td>Ca II</td>
<td>1.1</td>
<td>low chromosphere</td>
</tr>
<tr>
<td>10827</td>
<td>Si I</td>
<td>1.5</td>
<td>photosphere</td>
</tr>
<tr>
<td>10830</td>
<td>He I</td>
<td>2.0, 1.75, 1.25</td>
<td>upper chromosphere/low corona 1500-2000 km</td>
</tr>
<tr>
<td>15650</td>
<td>Fe I</td>
<td>3, 1.53</td>
<td>low photosphere</td>
</tr>
</tbody>
</table>
Instrument Requirements with FIRS

Multi-Spectral: Multi-Height Diagnostics
- Dual-arm spectrograph for simultaneous visible and infrared observations
- Beam splitter to share the beam with IBIS

High Cadence: Dynamics
- Increased throughput with 4 slits
Instrument Requirements

Multi-Spectral: Multi-Height Diagnostics
- Dual-arm spectrograph for simultaneous visible and infrared observations
- Beam splitter to share the beam with IBIS

High Cadence: Dynamics
- Increased throughput with 4 slits
Instrument Requirements

Multi-Spectral: Multi-Height Diagnostics
- Dual-arm spectrograph for simultaneous visible and infrared observations
- Beam splitter to share the beam with IBIS

High Cadence: Dynamics
- Increased throughput with 4 slits
Instrument Requirements

Multi-Spectral: Multi-Height Diagnostics
- Dual-arm spectrograph for simultaneous visible and infrared observations
- Beam splitter to share the beam with IBIS

High Cadence: Dynamics
- Increased throughput with 4 slits
Building a Scan with 4 Slits
Instrument Requirements

Multi-Spectral: Multi-Height Diagnostics
 - Dual-arm spectrograph for simultaneous visible and infrared observations
 - Beam splitter to share the beam with IBIS

High Cadence: Dynamics
 - Increased throughput with 4 slits
Instrument Requirements

Multi-Spectral: Multi-Height Diagnostics
Dual-arm spectrograph for simultaneous visible and infrared observations
Beam splitter to share the beam with IBIS

High Cadence: Dynamics
Increased throughput with 4 slits

High Spectral Resolution: Detailed Physics
Large IR grating with steep blaze
300,000 for the IR, 600,000 for the visible (3pm measured with HeNe)
Instrument Requirements

Multi-Spectral: Multi-Height Diagnostics
Dual-arm spectrograph for simultaneous visible and infrared observations
Beam splitter to share the beam with IBIS

High Cadence: Dynamics
Increased throughput with 4 slits

High Spectral Resolution: Detailed Physics
Large IR grating with steep blaze
300,000 for the IR, 600,000 for the visible (3pm measured with HeNe)

High Spatial Resolution: Structure Detail
Diffraction-limited with HOAO
f/36 and f/108 feed optics for high and low-res modes
"Tower of Power"
aka f/108 feed optics
FIRS Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>FIRS f/36*</th>
<th>FIRS f/108*</th>
<th>Hinode SOT/SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telescope</td>
<td>76.2 cm Solar Tower</td>
<td>...</td>
<td>50 cm Aplanatic Gregorian</td>
</tr>
<tr>
<td>Rayleigh limit @ 6302</td>
<td>0.21”</td>
<td>...</td>
<td>0.32”</td>
</tr>
<tr>
<td>Rayleigh limit @ 10830</td>
<td>0.36”</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Rayleigh limit @ 15648</td>
<td>0.52”</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Field</td>
<td>174” x 75”</td>
<td>58” x 25”</td>
<td>160” (320” max) x 151”</td>
</tr>
<tr>
<td>Vis Spatial Sampling</td>
<td>0.30” x 0.08”/pix</td>
<td>0.10” x 0.03”/pix</td>
<td>0.15” x 0.16”/pix</td>
</tr>
<tr>
<td>IR Spatial Sampling</td>
<td>0.30” x 0.15”/pix</td>
<td>0.10” x 0.05”/pix</td>
<td>...</td>
</tr>
<tr>
<td>Nominal Scan Time**</td>
<td>20 min</td>
<td>...</td>
<td>83 min</td>
</tr>
<tr>
<td>6302 Spectral Resolution (Sampling)</td>
<td>0.03 (0.01) Å</td>
<td>...</td>
<td>0.03 (0.02) Å</td>
</tr>
<tr>
<td>10830 Spectral Resolution (Sampling)</td>
<td>... (0.04) Å</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>15648 Spectral Resolution (Sampling)</td>
<td>0.17 (0.05) Å</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

* Assuming use of 40 μm slit
** S/N ~ 10³
FIRS Data

First Light 30 April, 2007

So far: 6 regions, 20 days, various configurations

Best yet: NOAA 11024, 7 July, 2009
Current Status

FIRS standard configuration is complete!

- Observer training July, September 2009
- Released for NSO use 4th quarter 2009
- Released for general use 1st quarter 2010
For the Future

Extended Capabilities:

- Additional visible and IR detectors for simultaneous 6302-8542-10830-15650
- Maybe super-achromatic dual-waveplate modulator for synchronized exposures
- New pair of Wollaston prisms for smaller beam deviation and larger FOV
- More narrow-band filters for extended wavelength coverage
Thank You!

Ask us for a tour

for more information visit:
http://kopiko.ifa.hawaii.edu/firs/

or contact us:
jaeggli@ifa.hawaii.edu
lin@ifa.hawaii.edu